29 30

-continued

Asn	Ala 290	Lys	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Tyr	Asn 300	Ser	Thr	Tyr	Arg
		Ser	Val	Leu			Leu	His	Gln	-		Leu	Asn	Gly	•
305					310					315					320
Glu	Tyr	Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Ala 330	Leu	Pro	Ala	Pro	Ile 335	Glu
Lys	Thr	Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Tyr
Thr	Leu	Pro 355	Pro	Ser	Arg	Glu	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
Thr	Cys 370	Leu	Val	Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
Glu 385	Ser	Asn	Gly	Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
Leu	Asp	Ser	Asp	Gly 405	Ser	Phe	Phe	Leu	Tyr 410	Ser	ГХа	Leu	Thr	Val 415	Asp
Lvs	Ser	Ara	Trp	Gln	Gln	Glv	Asn	Val		Ser	Cvs	Ser	Val		His
2,5	501	9	420	0111	0111	017	11011	425		Der	0,5	501	430		1110
Glu	Ala	Leu 435	His	Asn	His	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Pro
Gly															

What is claimed is:

- 1. A method for purifying an antibody from a composition comprising the antibody and a contaminant, which method comprises the following steps performed sequentially:
 - (a) binding the antibody to a cation exchange material with an equilibration buffer at a first conductivity;
 - (b) washing the cation exchange material with a wash buffer, wherein the conductivity of the wash buffer increases from a second conductivity that is higher than the first conductivity to a third conductivity during the washing;
 - (c) passing a fixed volume of wash buffer at the third conductivity over the cation exchange material; and
 - (d) eluting the antibody from the cation exchange material with an elution buffer at a fourth conductivity that is higher than the third conductivity.
- 2. The method of claim 1 wherein the cation exchange resin comprises sulphopropyl immobilized on agarose.
- 3. The method of claim 1 wherein the conductivity of the wash buffer increases at a constant rate from the second 50 conductivity to the third conductivity.
- **4**. The method of claim **1** wherein the conductivity of the wash buffer increases at two or more different rates from the second conductivity to the third conductivity.
- **5**. The method of claim **4** wherein the conductivity of the sush buffer increases at a first rate for a first segment of the washing, at a second rate for a second segment of the washing and at a third rate for a third segment of the washing.
- **6**. The method of claim **5** wherein the wash buffer comprises a mixture of equilibration buffer and elution buffer.

- 7. The method of claim 6 wherein the conductivity of the wash buffer is increased by increasing the proportion of elution buffer in the wash buffer.
- **8**. The method of claim **7** wherein the proportion of elution buffer in the wash buffer increases at a constant rate of about 6% during the first segment, at a constant rate of about 3.5% during the second segment and at a constant rate of about 2% during the third segment.
- 9. The method of claim 7 wherein the proportion of elution buffer in the wash buffer increases from about 26% to about 54% during the first segment, from about 54% to about 61% during the second segment and from about 61% to about 74% during the second segment.
- 10. The method of claim 5 wherein the cation exchange material is washed with about 5 column volumes of wash buffer in the first segment, about 2 column volumes of wash buffer in the second segment and about 6 column volumes of wash buffer in the third segment.
- 11. The method of claim 1 wherein the conductivity of the wash buffer is increased by increasing the proportion of elution buffer in the wash buffer.
- 12. The method of claim 1 wherein the conductivity of the wash buffer is increased by increasing the salt concentration therein.
- 13. The method of claim 1 wherein the fixed volume of wash buffer passed over the cation exchange material in step (c) is between about 0.4 column volumes and about 1.0 column volumes.
- **14**. The method of claim **1** further comprising washing the ion exchange material with a regeneration buffer after step (d).

* * * * *